Pharming « Terug naar discussie overzicht

Inhibition of complement improves graft outcome in a pig model of kidney autotransplantation

6 Posts
[verwijderd]
1
Received: 17 May 2016Accepted: 16 August 2016Published: 23 September 2016

Study design
We investigated the benefits of pre-reperfusion treatment with recombinant human C1INH (rhC1INH), inhibitor of both complement and contact activation, in a pig model of kidney autotransplantation, subjecting the organ to 60 min warm ischemia prior to 24 h static preservation to maximize damage.

....
Keywords

Complement system proteins Drug evaluation Ischemia Kidney transplantation Preclinical Reperfusion injury
Background

The rise of transplantation science to the status of the most adapted treatment for end-stage renal disease increased the demand for organs. As a consequence, only one quarter of patients on waiting lists have access to an organ. This led to the extension of donor criteria and the acceptation of marginal donors [1], donors aged over 60, and donors aged 50–59 with at least two of three additional risk factors including cerebrovascular accident as a cause of death, history of hypertension, and serum creatinine above 1.5 mg/dl prior to transplantation. However, these organs are particularly sensitive to ischemia reperfusion injury (IRI) [2], well demonstrated as having a dramatic impact on short [3] and long term [4] outcome. Current organ preservation techniques are not adapted to these new donor demographics, and it is thus of primary importance to better define IRI mechanisms in order to devise novel therapeutic protocols and improve organ quality.

The complement cascade is a key feature of the immune response, capable of inducing both innate and adaptive responses as well as lead to cell death [5]. In recent years, evidence has accumulated towards the involvement of this pathway in transplantation complications. The complement system is activated immediately following reperfusion, continuing through the multiple stages of graft survival [6], from the early response to chronic fibrosis development [7]. Indeed, complement is already involved at the donor level, playing for instance a key role in the tissue damage occurring during brain death [8].

The involvement of complement in IRI has been extensively demonstrated in a variety of mouse models [9], using multiple KO approaches for key factors such as C3, Factor B, C5, or DAF. This prompted the testing of complement-targeted therapies against IRI [10]: in rats, an analog of C3 convertase inhibitor protected against ischemia reperfusion (IR) complications; in mice, a Mannose-Binding Lectin (MBL) inhibitor prevented thrombogenesis, while monoclonal antibodies against MBL reduced complement deposition in vitro and post-myocardial infarction lesion in rats; recombinant soluble complement receptor 1 was beneficial in models of IR and in models of transplantation (lung and liver). The importance of complement activation in reperfusion injury prompted the initiation of clinical trials to test the benefits of an anti-C5 antibody (Eculizumab) to prevent DGF (Delayed Graft Function) (NCT01403389; NCT01919346), which are still ongoing.

In the current study, we tested the benefits of a recombinant human C1 inhibitor (rhC1INH) [11]. Therapeutic strategies centered on C1 have shown significant benefits in models of myocardial IR [12] as well as in lung transplantation models [13]. This strategy downregulated the expression of surface receptors on endothelial cells, reducing the immune response [14]. Endogenous C1 inhibitor (C1-INH) has a plasma concentration ~240 mg/l, corresponding to 1 U/ml [15]. It belongs to the serpin family (serine protease inhibitors) and while it targets the classical pathway, recombinant C1 inhibitors have been shown to target the lectin pathway as well in myocardial IR models [16], and to have several inhibitory activities on the alternative pathway, particularly through C3b [17].

C1INH also exhibits activities beyond its original target C1, as indeed it was demonstrated to target factor XIIa and plasma kallikrein of the contact system, factor XIa and thrombin of the coagulation pathway as well as plasmin and tissue plasminogen activator of the fibrinolytic pathway [18]. Thus, this compound could have protective benefits beyond its actions on the complement pathway. Indeed, our own work [19, 20] highlighted the therapeutic benefits of using a molecule directed against the coagulation pathway in a preclinical model of kidney transplantation.

RhC1INH inhibited complement deposition in a large animal model of kidney warm ischemia [21]. This prompted us to test rhC1INH in a preclinical model of kidney autotransplantation in the pig, an animal offering a very high degree of correlation to the clinical situation [22], in which the kidney was subjected to a period of 60 min warm ischemia prior to retrieval in order to maximize IRI. The experiments in this report demonstrate that a single dose of rhC1INH at the time of reperfusion reduces complement deposition and improves long term function of the transplanted kidney.

Methods

Compound
Both recombinant C1 esterase inhibitor (rhC1INH; Ruconest®) and vehicle were provided by Pharming B.V. (Leiden, The Netherlands) rhC1INH concentration was 150 U/mL. Vehicle contained sodium citrate (19.7 mol/L), citric acid (0.3 mol/L), sucrose (189.9 mol/L); pH 6.8.
[verwijderd]
0
..
Discussion

In this study, we tested the relevance of targeting the complement system activation at the reperfusion stage in an auto-transplanted pig kidney model, using a compound with a wide range of activities, including inhibition of the complement, contact system, coagulation and fibrinolysis cascades.

RhC1INH treatment demonstrated a significant improvement of kidney function post-transplant. Measurement of serum creatinine levels showed that time to peak and height of peak were not altered, however there was a striking difference in recovery: while vehicle treated animals showed a slow recovery, rhC1INH treatment accelerated recovery with an earlier start (day 3) and sharper decreases reaching pretransplant levels within 14 days.

We investigated the chronic consequence of treatment: (i) function analysis showed that the rhC1INH- treated group recovered to pretransplant serum creatinine levels by month 1, while vehicle-treated animals never achieved levels below 250 µmol/L, threefold above baseline; (ii) IFTA exploration demonstrated that the treatment significantly reduced injury development; however rhC1INH-treated group levels were ~10 %, whereas in our experience with the same model, IFTA development could be reduced to 5 % [19]; (iii) immune response at 3 months was increased in the vehicle group, while it was lower in the rhC1INH-treated group; (iv) EMT activation was high in the vehicle group with both stainings observable in both the tubules and the interstitium of rhC1INH-treated kidneys.

Investigating further, we determined by western blot the activation of the signaling pathway emblematic of EMT and IFTA, i.e. TGF-ß. This showed that rhC1INH treatment permitted some degree of protection, with reduced activation of Smad 3 and increased levels of BMP7. However, the observed increase in TGF-ß expression in the rhC1INH group is surprising. This could be due to the fact that the treatment only partially protected against IRI. Our results are similar to another study on rhC1INH treatment and EMT [26], however the later uses a 30 min warm ischemia model in the pig, with outcomes measured after 24 h of reperfusion, hence representing a direct effect of the molecule, while herein we investigated the chronic consequences of the treatment. Hence, the treatment may have simply delayed the occurrence of fibrosis through the TGF-ß pathway. Another explanation stems from the other role of TGF-ß, namely as an anti-inflammatory cytokine [27, 28]. Indeed, the observed production of TGF-ß could have a systemic effect, reducing immune activation. This hypothesis is in compatible with our results on innate and adaptive immune cell invasion.

We characterized the impact of the treatment on transplanted kidneys. We thus tested RhC1INH impact on complement activation using immunofluorescent staining on biopsies collected 30 min after reperfusion. In healthy pigs, complement pathway effectors are absent from the kidneys [21]. In our hands, rhC1INH noticeably inhibited C4d deposition. We did not see an effect of the treatment on C1q, C3c or MASP staining, but rhC1INH also appeared to affect MBL staining, reducing its signal. However this was detected inside the cells, an atypical, although described [29], localization for this protein, and too little data is available to permit definite conclusions. Thus, rhC1INH had some effect on complement deposition, mostly C4d. This is surprising, as C4 is upstream of C3 in the complement activation cascade; however, C4d deposition is more stable, and associated to pathways beyond the cytotoxic consequences of the complement cascade, such as antibody-mediated rejection [30]. RhC1INH was injected 45 min before the kidney was biopsied. Previous studies in humans and animals showed that it distributed rapidly and reached an effective dosage within 15–30 min [24], hence its high ratio of distribution and fast effect on complement could explain the lack of effects observed on its primary targets: the primary effect would have already taken place, and we only observe their consequences. Earlier biopsies could have revealed more, however the risk associated with the procedure was contrary to the aim of the study and ethical consideration.

[verwijderd]
0
Our results have commonalities with a recent study using rhC1INH in a pig warm ischemia model [21]. Indeed, comparing only animal data, both studies demonstrated a beneficial effect of the molecule on C4d deposition, and an influence of the treatment on the lectin pathway (MASP in the warm IR model, MBL herein). Other results in the warm IR model were not reproduced in our hands, such as the effect on C5b-9, however these differences can be explained by specificities of the models used (30 min warm ischemia versus 60 min warm ischemia combined to cold storage), and the timing of treatment, which are likely to induce different complement kinetics. Furthermore, as discussed above, the timing of our biopsies is perhaps not adapted to detect the early effects of the compound. Indeed, our setting could not permit us to perform serial biopsies on the organ, as it was required to sustain life for 3 months, hence we may have missed the activation of a specific pathway or its inhibition. All in all, both studies concurred to shown that rhC1INH was able to impede complement activation, and our results demonstrate the long lasting benefits of such a strategy on graft outcome.

Treatment at reperfusion involves a risk, and may be unable to fully prevent IRI. Indeed, this injury starts at the time of organ collection and extends well throughout the post-reperfusion period. Result herein show that the treatment did not prevent tubular injury, as shown by measurement of sodium fraction in the urine, as well as urinary Ngal and circulating AST detection, increasingly acknowledged as important non-specific markers of kidney lesion [31, 32]. Absence of difference between groups highlights the limits of treatment at reperfusion: while the benefits are evident in regards to glomerular function, tissue damage is taking place and may impact outcome. Our results suggest that treatment likely protects against the consequences of IRI on the inflammatory response, activated in autotransplanted kidneys, likely on the innate arm of the response. It would thus affect the ability of the kidney to recover from the injury, rather than the level of the injury itself, hence the absence of difference until day 3 (IRI effects at the tissue level) but increased recovery after day 3 (unimpeded repair). Thus, while rhC1INH treatment demonstrates evident benefits to graft outcome, combining this strategy with other methods directed at cold ischemia could be even more beneficial.

Ruconest has already been tested in clinical trials, concerning its safety (NCT00851409) and the treatment of Hereditary Angioedema (NCT00262301, [33]) and it is currently under further clinical evaluation for this pathology. Such an advanced clinical development is rarely found in transplantation-related IR treatments and thus represents an opportunity for a rapid deployment of complement-inhibition based therapy at the patient level.

Conclusion

In conclusion, complement-directed therapy at reperfusion is beneficial to kidney grafts, improving function recovery and limiting chronic lesion development. However, this therapy may not be sufficient by itself to fully prevent IR-related damage, particularly EMT activation and IFTA development. In the current organ shortage, decreased donor organ quality requires new conceptual developments in organ preservation and emerging recipient care protocols. RhC1INH could be an integral part of such optimized protocols in conjunction with other agents, for instance targeting oxidative stress [4] and other key reperfusion pathways such as coagulation [19], or following machine perfusion [34] in order to obtain a maximal level of protection against IR, particularly in marginal donors situations.
[verwijderd]
0
Mooi werk Beeldscherm.
Reeds in 2000 verscheen dit waardevolle (beetje pittige) artikel waarin toen al uitgebreid melding werd gemaakt van de veelheid aan toepassingen van C1-esterase inhibitor. Vanuit de grote vijver van Serpins is men gaan vissen; ook huidige en toekomstige (toegelaten) middelen komen uit die 'super-family' met enorm veel potentie. Sepsis werd ook toen al genoemd net zoals acute myocardial infarction en vascular leak syndrome. Veel bedrijven zijn sindsdien actief bezig met dit werk waaruit reeds talloze producten verschenen.
Maar het geeft een goed beeld van de potentie en het speelveld en rijkwijdte van mogelijkheden. Veel toekomstmuziek, veel potentie, kost enorm veel tijd, geld, energie en geduld maar desalnietemin voor de toekomst veelbelovend. En dat dan uit 2000: pharmrev.aspetjournals.org/content/52...
Toch altijd nog een mooi 'naslagwerk'
[verwijderd]
0
Sanquin gaat toch een serieus probleem krijgen;
www.msn.com/nl-nl/lifestyle/lifestyle...
Niet dat plasma-derived nou zo gevaarlijk is.... maar als donor val je in ieder geval al af...... en waarom zou je dat nou toch doen als er geen reden tot ongerustheid is..... Gaat lekker zo met dat plasma-derived volgens de kenners. Er kon wel eens een groter 'tekort' komen als sanquin zelf de deur al dicht houdt. pas op: geen leverworst meer eten hoor !
6 Posts
Aantal posts per pagina:  20 50 100 | Omhoog ↑

Meedoen aan de discussie?

Word nu gratis lid of log in met uw e-mailadres en wachtwoord.

Direct naar Forum

Detail

Vertraagd 18 apr 2024 17:35
Koers 0,868
Verschil 0,000 (0,00%)
Hoog 0,957
Laag 0,861
Volume 37.599.271
Volume gemiddeld 6.873.112
Volume gisteren 37.599.271

EU stocks, real time, by Cboe Europe Ltd.; Other, Euronext & US stocks by NYSE & Cboe BZX Exchange, 15 min. delayed
#/^ Index indications calculated real time, zie disclaimer, streaming powered by: Infront