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Abstract: Passive immunotherapy has emerged as a very promising approach for the treatment
of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the
misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority
of antibodies in clinical development are directed against amyloid 3 (Af), the primary amyloid
component in extracellular plaques. This review focuses on the current status of Af3 antibodies in
clinical development, including their characteristics and challenges that came up in clinical trials
with these new biological entities (NBEs). Emphasis is placed on the current view of common side
effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities
(ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed
on molecules that are directed against post-translationally modified variants of the A peptide,
an emerging approach for development of new antibody molecules.
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1. Introduction

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder worldwide,
currently affecting about 40 million people [1,2]. The patient number will prospectively triple in
the decades to come [1-3]. It is estimated that three out of four dementia cases are characterized
by AD-typical pathological changes [3,4]. Despite significant efforts over the last two decades,
there are only symptomatic and transiently active treatments available, making AD one of the largest
unmet medical needs. The currently approved symptomatic treatments target neurotransmitter
function by inhibiting cholinesterase or antagonizing NMDA receptors. Approved drugs are donepezil,
galantamine, rivastigmine (all acetylcholinesterase (AChE) inhibitors), memantine (NMDA receptor
antagonist), and a combination of donepezil and memantine [5]. A fourth cholinesterase inhibitor,
tacrine, was discontinued in 2013 due to hepatotoxicity, probably related to the production
of toxic intermediates (https://www.livertox.nih.gov/Tacrine.htm). Numerous other drugs are
currently under investigation. In 2017, 105 different new molecular entities (NMEs) were in clinical
development for the indication of AD. The majority (70%) address potential disease-modifying
therapies (DMTs) to slow or reverse the progression of AD [6]. The small molecule trials address
a variety of processes, including anti-oxidants [7], PPAR agonists [8], monoamine oxidase inhibitors [9],
and BACE-inhibitors [10].

AD is characterized by two histopathological hallmarks: the deposition of the amyloid
B (AB) peptide within plaques and the brain vasculature, and intracellular aggregation of the
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hyperphosphorylated protein tau in neurofibrillary tangles [11-13]. There is compelling evidence
that the accumulation of A3 precedes the spreading of tau pathology, brain structural changes,
and symptomatic changes by years if not decades [14]. Moreover, a small proportion of AD cases are
caused by autosomal dominant mutations in the amyloid precursor protein (APP), presenilin 1 (PS1)
or presenilin 2 (PS2) genes. The gene products are involved in the formation of the AP peptide.
The resulting influence ranges from increased Af3 production, overproportioned formation of species
with a high aggregation propensity, or influence on the compartment in which APP is processed [15-17].
Protective mutations have also been described, which lead to reduced cleavage of APP and thus
the lowering of Af production and the risk for development of dementia [18]. The association
of the formation of A3 with inherited early-onset AD (EOAD) resulted in the amyloid hypothesis
of Alzheimer’s disease. According to the hypothesis, Af in its aggregated form represents the
central trigger for a cascade of pathophysiological brain changes, eliciting tau hyperphosphorylation,
neuronal damage, synapse and cell loss, and dementia [16]. Although substantially supported by
novel amyloid imaging techniques and these inherited AD cases, the hypothesis has been the subject
of much debate for years. This was caused by obstacles in drug and concept design and numerous
failures of drugs that were designed to address the formation and/or accumulation of the A3 molecule.
Several reasons might account for these failures, such as low selectivity of small molecule inhibitors
(e.g., for y-secretase) [19], and inefficient penetration of the blood-brain barrier, which initially
complicated the development of BACEl-inhibitors [20,21]. However, the primary reason might
be due to the inclusion of non-AD dementia patients in clinical trials and the late start of treatment
within the course of the disease [22,23]. Therefore, current clinical trials recruit only patients showing
a clear AD signature (e.g., by imaging or biomarkers), and start treatment of patients with prodromal
to early AD [22]. The failures of two monoclonal antibodies in clinical phase IIl—bapineuzumab and
solanezumab [24,25]—contributed to the questioning of the amyloid hypothesis as a basic target for
intervention. However, the critical assessment of these failures led to the development of new antibody
molecules and strategies for their application. This review summarizes the state of the development
of these antibodies, and strategies and challenges for their development. Among these molecules,
the monoclonal antibody aducanumab has been shown to significantly reduce amyloid load and to
halt cognitive decline in two cognitive measures over a treatment period of 54 weeks in a Phase 1b
study [26], thus providing a strong argument in favor of the amyloid hypothesis.

2. Monoclonal Antibodies Targeting Af3 in Clinical Development

As shown in Table 1, there are four different antibodies currently being tested in clinical phase III
studies: solanezumab, aducanumab, gantenerumab, and crenezumab. Although all of these antibodies
recognize Af, they differ significantly with regard to their origin and their selectivity to aggregated
forms (i.e., oligomers and fibrils). Solanezumab and crenezumab bind to epitopes within the mid-region
of AP, which is a region that undergoes a structural change to form an intramolecular anti-parallel
-sheet during fibril formation [27,28]. Hence, these antibodies preferably bind to monomeric A
like solanezumab [29] or are reported to recognize more specific different forms of oligomers and
fibers in case of crenezumab [30]. In contrast, aducanumab and gantenerumab recognize—at least
as one primary interaction site—the N-terminal region of A, and are apparently most effective at
binding aggregated forms (e.g., fibrils). Another differentiating point for these antibodies regards their
stem (fragment crystallizable or Fc) region, which is the invariable part of antibodies which mediates
the interaction with immune cells to elicit phagocytosis and degradation of the antigen—-antibody
complex [31]. There are four classes of human immunoglobulin G (IgG ) molecules differentiated
that vary according to the Fc region: IgGl1, 2, 3, and 4. These molecules display significantly different
features: For instance, in humans IgG1l molecules mediate strong binding to different forms of
Fcy receptors on antigen-presenting cells and strongly elicit the activation of C1q of the classical
complement cascade. In stark contrast, IgG2 and IgG4 show only weak interaction with Fcy receptors
and do not mediate complement activation [32]. Notably, the majority of human antibodies under
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development (Table 1) are IgG1 derivatives. This may be somewhat surprising, as this subtype also
induces the release of pro-inflammatory cytokines, which might contribute to the observed side
effects such as amyloid-related imaging abnormalities (ARIAs). A very prominent example for that
is provided by a phase 1b study of aducanumab [26]. Here, a dose-dependent reduction of the
amyloid load as measured by positron emission tomography (PET) was observed over a one-year
treatment period. More importantly, the treatment also resulted in a significant cognitive stabilization
in mini-mental status examination (MMSE) and clinical dementia rating sum of boxes (CDR-SB) test
paradigms at the high dose of 10 mg/kg. Although the study has shown for the first time efficacy of
amyloid immunotherapy and therefore provides a prominent proof of the amyloid cascade hypothesis,
there was a significant liability for development of ARIA with edema (ARIA-E) in the high-dose
group. More than one-third of all treated patients developed imaging abnormalities. In contrast,
crenezumab, an IgG4 antibody, did not show side effects up to doses of 60 mg/kg [33]. In order to
avoid this side effect, several antibodies in clinical development have been modified to attenuate their
effector function. For instance, MEDI1814 and GSK93776, which recognize the A3 C- or N-terminus,
respectively, represent IgG1 molecules that harbor mutations to reduce the effector function. Although
the switch of the antibody subtype to lower antibody-dependent cell-mediated cytotoxicity (ADCC)
and Complement-dependent cytotoxicity (CDC) appears conceivable in terms of the prevention of side
effects, there has also been failure reported with such modified molecules. The most prominent example
is the antibody ponezumab, whose development was discontinued after Phase 1 clinical studies.
The antibody was of an IgG2 subtype, and therefore ADCC and CDC functions were significantly lower
compared to IgG1 antibodies. The Phase 1 data suggested the entry of the antibody into the brain and
an accumulation of the antibody and presumably antigen—antibody complexes within the circulation.
This observation raised safety concerns and finally led to discontinuation of its development.
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Table 1. Overview of amyloid 3 (A)-directed antibodies being tested in clinical trials. Further information can be found on https:/ /clinicaltrials.gov/. PI, PII,
and PIII refer to phases one, two, and three of clinical trials, respectively. AD: Alzheimer’s disease; ARIA: amyloid-related imaging abnormality; FAD: Familial
Alzheimer’s Disease; IV: intravenous; SC: subcutaneous.

Antibody/IgG Subtype Company Specificity Dosage Development Stage
Bapineuzumab/IgG1 . PIL: 12-month 0.5, 1.5, or 5 mg/kg Terminated n August 2012, be'zcguse 2 large
. . Ap 1-5 (helical, Phase 3 studies showed no clinical benefit.
AAB-001 (humanized mouse Janssen/Pfizer . . PII: 18-month 0.15, 0.5, 1, or 2 mg/kg . .
N-terminal D sensitive) This decision was not based on any new safety
3D6) PIII: 18-month 0.5 mg/kg 1.0 mg/kg
concerns [24,34]
AAB-003 (PF-05236812) Completed 2016, lower toxicity (ARIAs)
humanized and IgG1 AB 1-5 (helical compared to Bapineuzumab was expected,
Fc-engineered (Effector function Janssen/Pfizer 4 PI1:05,1,2,4,8mg/kg continuation as open-label extension study to

reduced variant of
bapineuzumab)

N-terminal D sensitive)

February 2017
[35], discontinued in January 2018 by Pfizer.

Ponezumab (PF-04360365,
RN1219) IgG2 (humanized
mouse monoclonal antibody)

Pfizer (developed by Rinat
Nsc.)

binds the free
carboxy-terminal amino
acids 33-40 of Ap 1-40

PII 10 mg/kg 20092011
PII 8.5 mg/kg 2008-2011

Nov 2011, Pfizer Inc. discontinued
development of ponezumab [36,37]

Solanezumab (LY2062430) IgG1
(humanized mouse 266])

Eli Lilly

AP 16-26
accessible only on
monomeric A

PIII 2009-2012EXPEDITION
PIII 2010-2014 EXPEDITION EXT
PIII 2013-2016 EXPEDIRION 3
PIII 20162017 EXPEDITION PRO
(solanezumab 400 milligrams (mg) every 4
weeks for 76 weeks
PIII A4 (2014-2022)
400-1600 mg IV every 4 weeks for 240 weeks

Failed in 2012 in primary endpoint and
terminated in May 2017.
Insufficient scientific evidence that
solanezumab would likely demonstrate a
meaningful benefit to patients with prodromal
AD as defined by the study protocol [25,38].
Active in FAD PIII DIAN-TU (2012-2023) [39]
Active in PIII A4 study in older individuals at
risk for AD (2014-2022)

LY3002813 IgG1 (humanized
mouse mE8-IgG2a)

Eli Lilly

PE3-AR

0.1 mg/kg to 10 mg/kg, infused monthly up to
four times, and a single subcutaneous injection
against placebo for safety

PI2017-2020 No cases of ARIA were seen in
this small trial, but there were two
asymptomatic cases of ARIA-H (hemorrhage).
The antibody was reported to be strongly
immunogenic [40,41].

PII 2017-2020 in combination with BACE
inhibitor LY3202626 in early symptomatic AD
(ClinicalTrials.gov Identifier: NCT03367403)

Gantenerumab (RG1450,
R0O4909832) IgG1 (full human)

Hoffmann-La Roche

AP 2-5(—9) +23-25
bind with subnanomolar
affinity to a
conformational epitope on
AP fibrils. It binds both
N-terminal and central
amino acids of A

PIII 225 mg SC 20102019
FAD PIII DIAN-TU (2012-2023)
two new PI trials started 2016, investigating
subcutaneous administration of higher doses
of gantenerumab.

PIII active
On March 6, 2017, MorphoSys, which partners
in the development of gantenerumab,
announced Roche will start two new Phase 3
trials of the immunotherapy for prodromal AD
in 2017 [42].
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Table 1. Cont.

BAN2401 IgG1 (humanized Eisai (discov. by BioArctic)
mADb158) 2014 coll. with Biogen

two PI: 2.5, 5 and 10 mg/kg

recognizes AP protofibrils PIL: 2.5, 5 and 10 mg/kg

PII 2012-2018 patients with early AD [44—46]

PI2012-2015 study to assess the safety and the
Sanofi recognizes Af protofibrils concentration-time profile with IV and SC PI [49]
injection

SAR228810 (humanized Ab
13C3); IgG4 (like) framework

No further development in AD. In 2015, this
antibody was in PII for retinal amyloidosis in
connection with dry age-related macular
degeneration (dry AMD) [51,52]

GSK933776 (humanized, IgG1 GlaxoSmithKline against the N-terminus of

reduced in ADCC and CDC) the AB PL:1,3, or 6 mg/kg
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3. Tackling Current Limitation—ARIA and BBB Penetration

In light of the promising Phaselb results of aducanumab, the most important challenge for the
development of antibodies might be devising ways to prevent imaging abnormalities such as ARIA-E
and ARIA with hemorrhage (ARIA-H). The appearance of these side effects seems to be closely related
to the amyloid burden in the vasculature of the patients [54]. Vascular amyloid is characterized by
deposition of AP peptides within the vessel wall of arterial brain vessels. This phenomenon is not
restricted to Alzheimer’s disease. Other amyloidoses are characterized by cerebral amyloid angiopathy
(CAA), such as familial Danish dementia. The appearance of CAA in sporadic Alzheimer’s disease is
linked to the ApoE4 allele, but also mutations within the A3 molecule predispose to the deposition of
A within the vessels and, occasionally, hemorrhage [55,56].

The presence of vascular amyloid generates a challenge for the development of immunotherapy.
Because the antibodies bind to the vascular deposits, monocytes and other lymphocytes are recruited,
which are stimulated to clear the amyloid. The binding of the antibody complexes to the Fc receptors
(CD16, CD64, and CD32) on macrophage-like cells stimulates the expression of proteases, and in turn,
the degradation of extracellular matrix. As a consequence, the barrier function of the vessel wall is
weakened and interstitial fluid may enter the brain tissue, which is observed as ARIA-E. In cases
of more severe damage to the vessels, hemorrhages might result. As mentioned in the previous
section, the antibodies differ according to their subclass and to the effector function. Typically, the IgG1
subtypes strongly stimulate phagocytosing cells and are therefore more prone to ARIA-E side effects.
Based on these observations, different options might exist to preserve the tissue from ARIAs. The first
strategy is a slow, progressive increase in dosing. Other studies have shown that the Ap from vessels
is cleared first, before parenchymal amyloid is degraded. Therefore, to start with a lower dose might
help to decrease the vascular burden first, and after successful initial treatment, higher doses are
reached to clear brain parenchyma of deposits. A second strategy to attenuate the effector function
of the antibodies is to reduce the binding to Fc receptors and in turn, vessel wall damage by the
activated lymphocytes. A third strategy might be to target specific A3 epitopes, which are not present
or are underrepresented in vascular amyloid compared with parenchymal A3. Among these is MEDI
1814, which is specific to the Af3 42C-terminus, accordingly sparing A{340 peptides. Because A[342
is underrepresented in vascular amyloid [57-59], this might help to reduce antibody binding to the
vessels. Similarly, another strategy is to target modifications of A3, which will be discussed below.

Finally, an improved passage of antibodies through the blood-brain barrier might help to
reduce dosage, and thus reduce common side effects. Different ways of achieving this have been
discovered or are currently under evaluation, either by modification of the protein drug molecule or
by influencing the blood-brain barrier. Prominent ways to modify the antibody molecule are based
on targeting receptor molecules at the epithelial cells. Typically, these receptors are shuttling cargo
between the blood and the brain parenchyma and are therefore predestined for the improvement of
antibody delivery to the brain. The most prominent receptors are probably the transferrin and insulin
receptors [60-63]. Antibodies developed to target these receptors typically contain one binding site for
the receptor and another site(s) for binding of the antigen. The most straightforward case is represented
by bispecific IgG molecules composed of two different heavy and light chains. However, there have
been numerous derivatives of such molecules described, containing transporter-specific fusions of
antibody parts linked to the heavy or light chains of the antibodies [63]. Although these strategies
have been described as increasing the brain penetrance of the antibodies significantly, the increase
of the concentration appears to be limited by different factors. On the one hand, the affinity of
the antibody towards the transporter molecule appears challenging. High affinity does not lead to
a significant increase of the antibody in the brain, because the antibody is only weakly released after
binding. A low affinity results in inefficient binding on the epithelium, and thus low transport levels.
Therefore, an optimal affinity needs to be reached, which in turn, apparently limits the efficiency of the
transport [64—66]. Another reason why such antibodies have not yet reached a clinical stage is that the
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binding of the receptors might lead to downregulation of these transporters under chronic treatment,
and thus increase the risk of side effects and loss of antibody efficacy.

These shortcomings have potentially also led to other techniques which are currently being
explored to increase the efficiency of immunotherapy. Focused ultrasound (FUS) just recently
provided very promising results to increase the penetration of drugs through the blood-brain barrier
(BBB) [67,68]. The method is based on the formation of microbubbles, which due to the application
of ultrasound, transiently open the BBB for a limited period of time to allow increased penetration
of drugs from the blood into the brain parenchyma. FUS, and a modified version called scanning
ultrasound (SUS), have been shown preclinically to increase therapeutic antibody delivery to the brain
in several AD-like mouse models [69,70]. The method offers the great advantage of a broad application
for different drugs, not limited to antibody molecules.

4. Post-Translationally Modified A Peptides: Emerging Targets for Inmunotherapy

The proteolytic processing of APP by BACE1 and y-secretase results primarily in the formation
of AP peptides of 40, 42, or 38 amino acids in length (i.e., AB1-40, Ap1-42, or AB1-38) [71,72].
However, several studies have shown that these species constitute a minor fraction of the A peptides
in AD. The majority of A is post-translationally modified by truncation, isomerization, or covalent
modification (Figure 1). N-terminal truncated peptides gained considerable interest because of
their exceptional toxicity and their abundance in familial AD [73-77]. Among the truncated forms,
those beginning at position 3 or 11 and containing an N-terminal pyroglutamate (pGlu) instead of
glutamate are certainly the most intensively studied [78]. The total amount of pGlu-Af in an AD brain
differs among studies—the majority of reports suggest a content of 5-25% [79-83]. The pGlu-Af3
content in the brain has been shown to increase as AD pathology progresses [82,84]. The rise
of pGlu-Ap is accompanied by a decrease of full length-Af3 species, and thus the pGlu-content
shows an inverse correlation with the cognitive status [85]. Numerous studies have shown that the
N-terminal pGlu-modification increases the aggregation propensity of the amyloid peptides [77,86-88].
Moreover, the pGlu-peptides show a rapid formation of oligomers with higher hydrophobicity
and neurotoxicity compared to full-length AR [77,88]. Co-aggregation studies with full-length A
have shown that pGlu-Af3 induces the formation of small molecular weight oligomers, which is
apparently caused by molecular priming [77]. On the basis of these characteristics, drug development
approaches that address the formation and/or clearance of pGlu-Af are underway. These are either
based on the inhibition of glutaminyl cyclase (QC) or targeting the pGlu-Af peptide by monoclonal
antibodies [89-91].

Figure 1. Schematic depiction of prominent posttranslational modifications of A3. Modifications appearing
within the peptide chain and those addressing amino acid side chains (in triangles) are highlighted.
APP: amyloid precursor protein; iD: isoaspartate; NO,: nitration pE: pyroglutamate; P: phosphorylation site.

With regard to immunotherapy, several studies in transgenic mice have shown the efficacy of
anti-pGlu3-Ap antibodies. We were the first to report that both preventive and therapeutic treatment
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showed significant reduction of pGlu-Af and also total AP deposits [92]. The decrease of total amyloid
burden by the antibody is noteworthy because transgenic mice display a much lower pGlu3-Af3
burden compared to human AD [76,93]. A later study substantiated these findings in PDAPP mice [40]
by demonstrating that a different pGlu3-specific antibody significantly reduced the total amyloid
burden in mice significantly, in the absence of microbleeds. A later study by us to determine the
effects of pGlu3-Af3 immunotherapy on cognition in AD-like transgenic mice revealed a significant
improvement of spatial learning in water T-maze upon treatment. The pGlu3-antibody treatment was
superior in this regard, over an antibody specific to the N-terminus of Af (3A1) [94]. No increase
in the incidence of microbleeds was observed. Notably, we did not observe an increase of Af in
the plasma of mice that were treated with the pGlu3-Af antibody. In contrast, treatment with 3A1
led to a significant increase of the plasma A concentration, suggesting different mechanisms of
action of these molecules. Meanwhile, a pGlu3-Af antibody, LY3002813, is the first to reach clinical
testing (Table 1). The initial results of a phase 1 study were presented at the Alzheimer’s Association
International Conference (AAIC) in 2016 [41]. In that study, patients received 0.1 to 10 mg/kg by
monthly intravenous injections. AB-PET tomography was used to evaluate treatment effects and
as an inclusion criterion. Treatment with the 10 mg/kg dose significantly reduced the plaque load
in the brain by about 40%. Incidence of ARIA-E was not observed, but two cases of ARIA-H have
been reported. Although the amyloid reduction was very impressive, the molecule appeared to elicit
a human anti-human antibody response, markedly reducing the half-life of the antibody in circulation.

On the basis of several studies in mice and these initial clinical findings, antibodies directed
against the pGlu3-Ap peptides appear to be very promising “second-generation” NBEs for the
treatment of AD. Monoclonal antibodies targeting modified Af3 offer some unique and potentially
advantageous characteristics: (1) The antibodies directly target a disease-specific form of Af
with high neurotoxic potential; (2) As a physiological function of Af31-40/42 has been suggested
by numerous studies [95-98], specific targeting of pGlu-Ap should not interfere with that role;
(3) The pGlu-modification prominently alters the structure of the A3 molecule, enabling efficient
isolation of antibodies with low cross-reactivity with other A3 entities and the amyloid precursor
protein, APP [92]. Moreover, the targeting of modified A offers some technical advantages with
regard to target engagement and, potentially, side effects. Because the pGlu-modified peptides are only
distributed to aggregates within the brain and are absent in plasma, the antibodies are not sequestered
within the periphery by the target molecule [94]. This potentially enables better brain distribution
of the drug and, as has been shown for pGlu-Ap antibodies, no increase of A within the plasma as
observed with other antibodies [94]. The specific targeting of one modification might also present
a rationale for the low incidence of ARIA or microhemorrhage observed in preclinical and clinical
studies. Because the density of the pGlu-Af epitopes is low compared with general A{3 epitopes
within CAA, the recruitment of microglia or other immune cells to these immune complexes to the
vasculature is potentially lower, and the appearance of edema is reduced as observed with LY3002813.

Although the pGlu-modified A} represents the best studied N-terminally modified species so far
and the pGlu3-Ap antibodies are by far the most advanced in development, other modifications
might also be targeted in future studies. For instance, numerous studies point toward other
modifications, which potentially increase the aggregation propensity and toxicity of A. Among those,
phosphorylation at position 8 and 23 or nitration at position 10 are potentially interesting targets for
monoclonal antibodies [99-102]. Thus, it remains to be seen whether targeting of modified A per
se offers the above-described potential advantages or whether these are only observed with protein
drugs targeting pGlu3-Af.

5. Conclusions

Ap immunotherapeutics are among the most advanced drugs in clinical development for the
treatment of AD. In spite of several failures of monoclonal antibodies in late-stage clinical studies,
these trials have provided an invaluable gain in the understanding of the disease mechanism,
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supporting the amyloid cascade hypothesis. The first generation of protein drugs still leave significant
room for improvement regarding the prevention of side effects and the penetration of the blood-brain
barrier (BBB). The improvement of BBB penetration, tailored antibody specificity, and affinity might
also finally help to overcome the drawbacks of treatment cost typically associated with passive
immunotherapy. In addition, current and future approaches to test combination therapy with
Ap-directed small-molecule drugs promisingly appear to be more effective, safer, and less costly.
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